数学学科Seminar第2994讲 Navier-Stokes方程的能量与螺旋度守恒增强伽辽金方法

创建时间:  2025/12/16  邵奋芬   浏览次数:   返回

报告题目:Energy-and helicity-conserving enriched Galerkin method for Navier-Stokes equations(Navier-Stokes方程的能量与螺旋度守恒增强伽辽金方法)

报告人 (Speaker):张倩 教授(吉林大学)

报告时间 (Time):2025年12月18日(周四)9:00

报告地点 (Place): 校本部GJ303

邀请人(Inviter):刘东杰

主办部门:太阳集团tyc539数学系

报告摘要:In this talk, I will present an efficient enriched Galerkin (EG) method for the incompressible Navier–Stokes equations. In contrast to existing EG formulations, our approach enriches the first-order continuous Galerkin space with piecewise constants defined on edges in two dimensions and on faces in three dimensions. This enrichment acts as a correction to the normal component of the CG velocity space, enabling an inf-sup stable discretization. Building on this enriched space, we employ a velocity reconstruction operator and discretize the convective term in its rotational form. This leads to two time-stepping schemes that preserve both discrete kinetic energy and helicity in the inviscid limit: a fully nonlinear Crank–Nicolson scheme, and a linear, computationally cheaper variant obtained by temporally linearizing the convective term.

上一条:数学学科Seminar第2995讲 一般网格上辐射扩散方程的保正有限体积格式

下一条:物理学科Seminar第783讲 Lecture 1 Gravity and Cosmology : Introductory overview


数学学科Seminar第2994讲 Navier-Stokes方程的能量与螺旋度守恒增强伽辽金方法

创建时间:  2025/12/16  邵奋芬   浏览次数:   返回

报告题目:Energy-and helicity-conserving enriched Galerkin method for Navier-Stokes equations(Navier-Stokes方程的能量与螺旋度守恒增强伽辽金方法)

报告人 (Speaker):张倩 教授(吉林大学)

报告时间 (Time):2025年12月18日(周四)9:00

报告地点 (Place): 校本部GJ303

邀请人(Inviter):刘东杰

主办部门:太阳集团tyc539数学系

报告摘要:In this talk, I will present an efficient enriched Galerkin (EG) method for the incompressible Navier–Stokes equations. In contrast to existing EG formulations, our approach enriches the first-order continuous Galerkin space with piecewise constants defined on edges in two dimensions and on faces in three dimensions. This enrichment acts as a correction to the normal component of the CG velocity space, enabling an inf-sup stable discretization. Building on this enriched space, we employ a velocity reconstruction operator and discretize the convective term in its rotational form. This leads to two time-stepping schemes that preserve both discrete kinetic energy and helicity in the inviscid limit: a fully nonlinear Crank–Nicolson scheme, and a linear, computationally cheaper variant obtained by temporally linearizing the convective term.

上一条:数学学科Seminar第2995讲 一般网格上辐射扩散方程的保正有限体积格式

下一条:物理学科Seminar第783讲 Lecture 1 Gravity and Cosmology : Introductory overview