数学系Seminar第1569期 变分法观点下的N点涡旋问题

创建时间:  2017/12/25  龚惠英   浏览次数:   返回

报告主题:变分法观点下的N点涡旋问题
报告人: 王峮  博士  (U Paris IX-Dauphine, CEREMADE)
报告时间:2017年 12月29日(周五)9:00
报告地点:校本部GJ410
邀请人:席东盟
主办部门:太阳集团tyc539数学系 

报告摘要:The Kirchhoff problem, also known as the N-vortex problem, is a Hamiltonian system that describes interactions of vortices in the plane, and finds application in various phenomena in physics. This system is in general not integrable in Liouville-Arnold sense when the number of vortices is more than 3.
Using the first integral and symmetry consideration, one can overcome the difficulty raised at singularity and existence of critical points of modified action functional will be proved by minimax argument, which corresponds to relative periodic solution of the original Kirchhoff problem.

 

欢迎教师、学生参加 !

上一条:数学系Seminar第1570期 随机周期解:存在性

下一条:数学系Seminar第1568期 图像处理中的非凸优化


数学系Seminar第1569期 变分法观点下的N点涡旋问题

创建时间:  2017/12/25  龚惠英   浏览次数:   返回

报告主题:变分法观点下的N点涡旋问题
报告人: 王峮  博士  (U Paris IX-Dauphine, CEREMADE)
报告时间:2017年 12月29日(周五)9:00
报告地点:校本部GJ410
邀请人:席东盟
主办部门:太阳集团tyc539数学系 

报告摘要:The Kirchhoff problem, also known as the N-vortex problem, is a Hamiltonian system that describes interactions of vortices in the plane, and finds application in various phenomena in physics. This system is in general not integrable in Liouville-Arnold sense when the number of vortices is more than 3.
Using the first integral and symmetry consideration, one can overcome the difficulty raised at singularity and existence of critical points of modified action functional will be proved by minimax argument, which corresponds to relative periodic solution of the original Kirchhoff problem.

 

欢迎教师、学生参加 !

上一条:数学系Seminar第1570期 随机周期解:存在性

下一条:数学系Seminar第1568期 图像处理中的非凸优化